
1 What is an Operating System?

An operating system is the software that manages the computer hardware. It is composed
of a collection of specific-purpose programs that run on a computer system and allow it to
function properly. These programs perform basic tasks such as recognizing keyboard and
mouse inputs, keeping track of stored files and folders, sending information to the display, or
controlling peripheral devices.

The purpose of an operating system is to provide an environment in which users can run
programs conveniently and efficiently. It is composed of essential programs that manage
the computer hardware and provide a user-friendly interface for running applications. These
programs and software modules serve as an intermediary between the hardware and the
applications running in a computer system.

Therefore, operating systems have several tasks:

• They manage system resources, such as the processor, memory, and input and output
devices, allocating these resources to applications, ensuring that they do not interfere
with each other.

• They abstract away the computer hardware, preventing users and programmers from
having to know its details and providing a simple and coherent interface to run applica-
tions, hiding the complexity of the underlying hardware.

• They provide security and protection to applications, offering mechanisms to protect
system resources and data from unauthorized access and malicious software.

• They provide utilities and services that make it easier for users to interact with the com-
puting system and run applications.

System calls are symbolic constructs that provide a way for user programs to request
services and resources from the underlying operating system. In other words, system calls
act as a bridge between user space and operating system space (cf. Fig. 1). When a user
program needs to perform privileged operations or access system resources, it makes a re-
quest to the operating system through a system call. The operating system, which operates
in a more privileged mode, receives and handles these requests, performing the necessary
operations on behalf of the user program.

Some common examples of system calls include those to perform file operations (e.g.,
opening, reading, writing, closing files, and manipulating file attributes); to control processes
(e.g., creating, terminating, and managing processes); to manage memory (e.g., allocating
and freeing memory, mapping and unmapping memory areas); to interact with input/output
devices (e.g., performing operations such as reading from or writing to a device); to com-
municate through a network (e.g., establishing network connections, sending and receiving
data over networks); or to exchange information among processes (e.g., synchronizing and
communicating among different processes).

System calls provide an abstraction layer for user programs, allowing them to access sys-
tem resources and services in a controlled and secure manner. They provide a standardized
interface for applications to interact with the underlying operating system, hiding the com-
plexities of low-level operations and providing a higher-level programming interface.

Operating systemscanbe classified into several types, such as batch processing systems,
time-sharing systems, distributed systems, network operating systems, real-time operating
systems and mobile operating systems. Each type of operating system is designed for an

3


